If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+42x-400=0
a = 3; b = 42; c = -400;
Δ = b2-4ac
Δ = 422-4·3·(-400)
Δ = 6564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6564}=\sqrt{4*1641}=\sqrt{4}*\sqrt{1641}=2\sqrt{1641}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2\sqrt{1641}}{2*3}=\frac{-42-2\sqrt{1641}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2\sqrt{1641}}{2*3}=\frac{-42+2\sqrt{1641}}{6} $
| 3-5x=7-7x | | 2x+14=28-4x | | Y-8=7(x+2) | | 8x-14=2x+7 | | x²+7x-72=0 | | 10(x=4)-(x-3)-1=8(x+3) | | 9x^2+24x+16=7(3x+4) | | 7,6+6z=-11 | | 2(A+4)=3a-2 | | 2x*3-3x^2+1=0 | | (1-x^2)^2-(x-x^2)^2=0 | | 8+7y,y=-2 | | 7-2x=-2,5 | | 27=1/2h(4+5) | | 3n^2+303-16200=0 | | X+5+3k=0 | | 2x-3/3x-1=2x+3/3x+4 | | z-2=27 | | K+2x^2-3=0 | | 3(b-4=2(4-b) | | 2^(3x+15)=1 | | 2^3x+15=1 | | x−15)=−4 | | 2^3x÷2^x=64 | | (X-1)(2x+5(3-x))=0 | | 4m^2+12m–18=0 | | 3(x-2)=7x-(x+3) | | 204=3(3x)+3x | | 70=x+x-30 | | 3z=z+70 | | 3z-20=z+90 | | 4x-17=9x+13 |